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Open Loop Operation
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Figure : Open loop operation where ﬁt is applied and ?t is measured where ?t € R™, 7,5

€ RP and t =1: Nturns
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Bunch Dynamics Extraction
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Figure : Objective is for given U; and measured 7,5, find the reduced order model and
estimate its parameters so that model can replicate the dominant bunch dynamics
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MDs, Simulations and Reduced Order Models

Future (Potential) Collaborators:
1) BNL, USA
2) KEK, Japan
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Figure : We use both machine data and non-linear macro-particle simulations codes
(HEADTAIL, CMAD) in reduced model parameter estimation
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N
Reduced Order Model Parameter Identification

@ The ultimate goal is to stabilize Ecloud and TMCI effects using
wide-band intra-bunch feedback system.

e Controlling multiple locations across the bunch requires
multi-input multi-output (MIMO) analysis.

e Important ! For example, you can make higher modes unstable
while trying to control dipole mode.

o The goal of identification is to fit parameters of the reduced order
MIMO model using MD measurements and macro-particle
simulation codes.

@ Reduced order model is required to design a control architecture
to stabilize effects of disturbances on intra-bunch dynamics under
hardware and processing power constraints.
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Model and Formalism

P77/ A W77

N o r . -D,
Y@ = D@ 'N@u() © 0 o 0
c K c L O - O -D
u(z) = i uzl y(@) = Oiylz*‘ A=O L - O -D,
i=0 i=0
~ k N k ) X . ' '
D(z) =Y Dz; N(z) =Y N7z LO O - I, =Dy
M T yz = = Ny — DN
. A De=1, N DN,
| | T u Q, = [CTIATC |- [T e e
H : 2 :
oo R Q] =n=k#p LNet = DN

Frouple (yZl )/2) Frouple (yifyl) €C=[0 O - O Lk D=N;

Figure : Reduced Model for Dipole

Figure : Observable Canonical Form
and Head -Tail Modes

for Discrete Time MIMO System
Xk+1 = AXy + BUg )
Y = OX},

where control variable (external excitation) U € RP, vertical displacement measurements
Y € RY, system matrix A € R™"*"™, input matrix B € R"*P, and output matrix C' € RI*X™.
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Figure :
@ Higher order dynamics can be analyzed by extending the model up to N coupled
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harmonic oscillators.
@ For example, the model above can capture up to 4 modes
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Data for Identification

o Experimental data was collected from a single bunch with 1 x 10"
protons at 26 GeV with low chromaticity configuration at CERN
SPS.

@ Both open loop driven and closed loop feedback measurements
were taken. Main focus is on open loop driven measurements for
identification in this presentation.

e In analysis, we use data from April, November, December 2012
and January, February 2013 MDs together with CMAD and
HEADTAIL simulations.
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N
MD Measurements - 2 x 2 Model

@ Drive SPS bunch using frequency chirp excitation signal and record corresponding
vertical motion.

@ Based on the transfer functions of cable plant, amplifiers and kicker, we calculate the
momentum kick that beam goes through.

@ Using the momentum kick signal and vertical displacement measurement, estimate
the parameters of reduced order model.

@ Drive the reduced order model with the same momentum kick signal to get vertical
motion that model estimates.
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measured vertical motion of the head
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MD Measurements - 4 x 4 Model, In Time Domain
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MD Measurements - 4 x 4 Model, In Freq. Domain
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Comparison of Measurements with Reduced Model

Driven chirp SPS measurement spectrogram (left), reduced model spectrogram (right)
Chirp tune 0.175 - 0.195 turns 2K - 17K
Tune 0.177 barycentric mode, tune 0.183 (first upper synchrotron sideband)

Model and measurement agreement suggests dynamics can be closely estimated.
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.
Exciting Mode 0, 1** and 2"¢ Upper Side Bands ?

@ A specific machine condition with very low chromaticy configuration.

@ Agreement between measurement and model shows that reduced order model can
capture dynamics.

@ Robustness of the identification algorithm has to be analyzed for such machine

conditions.
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Comparison of HEADTAIL with Reduced Model

@ Figures on top show vertical motion of bunch, driven by 200 MHZ, 0.144 - 0.22 Chirp,
1000 Turns. Bottom figures are corresponding spectrograms.
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___________________________
HEADTAIL Dominant Dynamics / Model Reduction

o If we look at the Henkel Singular Value analysis, we can realize
that 8 or 14 states (4 or 7 modes) out of >128 states are main

contributors to the dynamics. Therefore we should be able to fit
an 8th / 14th order model to capture these dynamics. Rest should

be redundant.

Hankel Singular Values (State Contributions)

[l Unstable modes
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State Energy
@
o
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Figure : Henkel Singular Values Analysis -
4 Dominant Modes

Table : Dominant Modes,
Synchrotron Tune 0.017

Mode Eigenvalue

1 £0.18001
2 £0.1632:
3 £0.19591
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Comparison of CMAD with Reduced Model
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___________________________
CMAD Dominant Dynamics / Model Reduction

o If we look at the Henkel Singular Value analysis, we can realize
that 6 states (3 modes) out of >128 states are main contributors to
the dynamics. Therefore we should be able to fit a 6th order model
to capture these dynamics. Rest should be redundant. Notice the
small differences between CMAD and HeadTail eigenvalues.
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Figure : Henkel Singular Values Analysis -
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Identification in Simulation Studies

@ Let’s look at a simple example in CMAD and think about where identification studies
can lead to.

@ Bunch is represented by a centroid. Using the exact same filter we used in MDs, close
the loop on bunch while driving it with an external frequency chirp excitation.
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Figure : Open and closed loop driven simulation for mode 0_dynamics analysis.
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|
System Identification Results

e 5 tap filter — 7th order closed loop system. Reduced order model
and identification techniques identify the dominant dynamics.

AclosedLoop = —0.0692 &= 1.14567, —0.755 £ 0.974, ...

(2)
Aestimated = —0.0683 £ 1.1459i
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|
Online MD Analysis Tool
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Figure : We are designing MD Tools to be able to have quick online data analysis while
we are taking data
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|
Why System Identification and Reduced Order Model

o Beam Diagnostics Tool

Beam parameters can be measured during MD such as modes,
tunes,etc. ..

@ Required for Controller Design

Enables us to use control design techniques.

Powerful solution to study different kinds of control techniques, i.e.
optimal control, robust control, without using too much machine
time.

Applicable to machine measurements together with simulation data
(HeadTail/CMAD).

Validation tool for simulations using machine measurements or
vice-versa.

Allows us to predict the future behavior of the system exploring
wide parameter space as opposed to running simulations for each
unique condition. For example, predicting the minimum gain to
stabilize as opposed to running simulation for different gains until
finding a stabilizing gain.
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Thank you for your attention !

e Any questions 7 ...
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